International Software Systems Inc. 2/19/91

An Environment for Functional and Performance
Prototyping of Parallel Programs

Ramén D. Acosta and Adolfo Guzmdn

International Software Systems Inc.
9430 Research Blvd., Echelon IV, Suite 250
Austin, TX 78759

Telephone: 512-338-5719
Fax: 512-338-5757
Email: acosta%issi.uucp@cs.utexas.edu

Abstract

Parallel Proto (PProto) is an environment for constructing prototypes of parallel programs
based on functional and performance modeling of dataflow specifications. The system supports
codesign and analysis of high-level software and hardware architectures. Facilities provided by
PProto include a visual language and an editor for hierarchical dataflow graphs, a resource model-
ing tool for creating parallel architectures, mechanisms for mapping software components to hard-
ware components, an interactive simulator for prototype interpretation, and a rense capability. The
simulator contains components for instrumenting, animating, debugging, and displaying results of
functional and performance models. The PProto environment is built on top of a substrate for man-
aging user interfaces and database objects to provide clear and consistent views of design objects
across system tools.

I~ 1944 Workshof o1 H&Muarc{f‘cf‘h;;’.:.&
(od‘jﬁnl 131 e Congre~r

) AUsTIo, TX- GRS
Functional and Performance Prototyping of Parallel Programs Engneering, 1

ARTICULO 76



International Software Systems Inc. 2/19M1

1 Introduction

Advances in computational power and availability continue to increase the attractiveness of
employing parallel architectures in high-performance applications. Unfortunately, architecting of
software systems to exploit the performance afforded by these processors remains a difficult chal-
lenge for software engineering. It is at the architectural design levels where design decisions can
have significant impact on the eventual functionality and performance of parallel systems. Thus,
methodologies and tools for analyzing prototypes during early phases of the specification and de-
sign process are critical to meeting system requirements,

Parallel Proto (PProto) is a computer-aided software engineering (CASE) environment that
aims to overcome difficulties associated with building distributed and parallel software systems by
supporting codesign and analysis of high-level software and hardware architectures [Acosta 1990,
1991]. Using prototyping as its primary methodology, PProto addresses the following areas:

* Specification and Design of Software Prototypes. Rapid system design is achieved
with a visual hierarchical dataflow language that includes facilities for object-oriented
data modeling.

* Architecture Modeling. A graphic editor is provided for building resource models of
many types of MIMD (multiple-instruction, multiple-data stream) machines, including
shared-memory and distributed-memory systems. Facilities are available for mapping
of software (logical) components to hardware (physical) components.

* Prototype Execution Using Simulation. Subsystems to support execution of proto-
types include an interpreter, a scheduler, and an architecture modeler. Additional sim-
ulation support includes tools for interactive debugging, functional animation, and
instrumentation for functional and performance analysis.

* Design Reuse. Management and browsing of hierarchical libraries containing reusable
specifications and designs is integrated with the system editors.

¢ User Interface Management. Interfaces to editing and simulation tools are managed
by a common graphical interface substrate. The user interface manager guarantees a
clear and consistent interface across tools.

* Object Management. Management of persistent objects is implemented by an object-
oriented database commonly accessible to all system tools,

PProto is being developed through 2 set of modifications and enhancements to Proto+, a pro-
totyping tool for specification and design of software systems based on dataflow concepts [Hart-
man 1989]. Proto+, in turn, extends the functional prototyping capabilities of the RADC Proto
System [Konrad and Hartman 1988) with a model for concurrent processing and communication
that provides control over scheduling of operations.

2 Parallel Programming Environments

Current and future advances in multiprocessor technology are expected to increase the need for
software engineering environments for parallel and distributed programming. These environments
will exploit the computation power of multiprocessors by assisting analysts in explicit specifica-

Functional and Performance Prototyping of Parallel Programs 2



International Software Systems Inc, 21981

tion of parallelism, debugging of multiple processing threads, and evaluation of performance and
efficiency.

Several research tools for evaluating the functionality and performance of parallel programs
have concentrated on low-level measurements of implemented systems [Lehr et al. 1989; Guarna
et al. 1989; Miller et al. 1990]. Using invasive procedures, dynamic statistics are accumulated and
graphically displayed with visualization techniques. Although this approach can be employed ef-
fectively for tuning parallel algorithms, it is inadequate for analyzing high-level architectural trade-
offs.

General purpose simulation tools can also be employed for building parallel systems [Russell
1987; SES 1989]. Use of such tools, however, requires the analyst to handle many more of the ge-
neric software/hardware modeling and performance analysis aspects of system design, in addition
to domain modeling tasks associated with application specification.

The support for higher-level visual program abstractions of PProto is closer in scope to that of
[Yan 1988; Browne et al. 1989; Pease et al. 1991). These systems contain facilities for concurrent
problem formulation, resource management strategies, performance evaluation, and graphical dis-
play of results.

3 Prototyping Paratlel Programs with PProto
PProto is a tool used by system analysts to accomplish the following:
« Create functional specifications.
« Refine functional specifications into interpretable functional prototypes.
« Interactively debug functional prototypes.

» Execute the functional prototypes before knowledgeable end users to validate the pro-
posed functionality in the context of target systems.

« Construct models of parallel machine architectures.

+ Evaluate the performance of different mappings of functional prototypes onto parallel
machines.

The system provides a specification environment for codesign of software and hardware archi-
tectures that incorporates a graphical user interface, several editors, an object-oriented database, a
reuse facility, and an interactive simulator. These tools support construction of specifications using
hierarchical dataflow graphs, models of parallel and distributed machine architectures, object-ori-
ented data models, and mappings of software components to hardware components. Figure 1 gives
an overview of the PProto methodology based on these prototyping concepts.

PProto is built on top of the UNIX™™ operating system using C++. Database management ser-
vices are provided by the object manager, which is built on top of a commercial object-oriented
database. The user interface manager (UIM) supplies graphical and textual interface services to
most system tools. This manager is built on top of the X Windows Server, which provides low-
level, device-independent network graphics services.

Figure 2 shows a high-level dataflow diagram of PProto, including the editing, object manage-
ment, and simulation subsystems of PProto. The editors generate one or more different kinds of

Functional and Performance Prototyping of Parallel Programs 3



International Software Systems Inc. 211901

Requirements
Lo . .
Specification
Reuse
Library

Functional Architecture
Prototype Prototype

Code Interpret and SW/HW
Generation Debug Mapping
Performance
l t Prototyping
Test, Installation, User Verification ’
Maintenance and Validation

| )

Figure 1. PProto Methodology Flow Diagram

objects that are saved in the database through services provided by an object manager. System ob-
jects include the following:

SSDL Objects. Dataflow connectivity, behaviors, and software/hardware mappings
Visual Objects. Graphical topologies and geometries

Schema Objects. Object-oriented data models

Architecture Objects. Connectivity and parameters for hardware primitives

Library Objects. Hierarchical reuse libraries.

PProto tools that generate and manipulate data include:

L

Graphic Editor. Graphical editing of dataflow graphs
Behavior Editor. Textual editing of behaviors
Schema Editor. Menu-based editing of data objects

Functional and Performance Prototyping of Parallel Programs 4



International Software Systems Inc. 2/1991

Behavior
Editor

Graphic
Editor

SSDL Objects
(Behavior Text)

Dataflow
Connectivity

Architecture
Connectivity

Connection
Routines

Topology
Routines

SSDL Objects Objects

Architecture Objects

SSDL Objects Schema Objects Schema

Editor

Mapping
Editor

Architecture

Objects SSDL, Schema,

Architecture Objects

SSDL, Schema,
Visual, Library
Objects

Reuse
Facility

Database

— Control,

Simulation
Results

Graphic, Architecture,
Schema Editors

Figure 2. PProto Dataflow Diagram

Functional and Performance Prototyping of Parallel Programs 5



International Software Systems Inc. 2/1991

+ Architecture Editor. Graphical editing of hardware component topologies
+ Mapping Editor. Software/hardware component mappings
* Prototype Simulator, Interpretation, animation, and debugging of a prototype

* Reuse Facility. Access to previously saved library components

3.1 Software Specification
A PProto system specification is a hierarchical dataflow graph consisting of
+ Nodes. Concurrent processes, functions, operators
» Data Stores. Shared memory to store state information
» Connections. Communication channels between nodes and data stores
« Ports. Interfaces between nodes and connections

Conceptually, a node contains a transformation that is applied to input data whenever the node is
activated. This transformation is depicted with either a behavior or with a dataflow graph refine-
ment. The behavior of each leaf node of a graph is described with a simple structured programming
language whose statements are interpreted during simulation. From behaviors bodies it is also pos-
sible to call functions in other languages (such as C). Although nodes are stateless, it is possible to
preserve state across node activations by storing data in data stores. Thus, PProto supports func-
tional prototypes incorporating both message-passing and shared-data communication.

PProto’s visual language is called the System Specification and Design Language (SSDL). In
the SSDL language, a clear distinction is made between the following portions of a design:

+ Dataflow. Graphical model of a specification
* Behavior. Data transformations achieved by leaf nodes of a dataflow graph
» Schema. Object-oriented data definitions

SSDL contains many features that are useful in building systems containing concurrent cooperat-
ing processes, including several synchronous and asynchronous message-passing protocols, shared
data stores, timing-related constructs, and data objects with dynamic attributes and inheritance. In
addition, translation to other programming languages, such as Ada, is possible for the purpose of
providing better performance and establishing a path towards construction of target applications.
3.2 Hardware Specification

PProto provides a generic mechanism for specifying several kinds of MIMD architectures.
These include shared-memory multiprocessors, distributed-memory multiprocessors, and hybrid
machines. Hardware modeling primitives include

* Processors. Execute node behaviors
+ Memories. Contain data store values
+ Buses. Transfer messages for communication between nodes

User-specified parameters are supplied for selection of hardware resource characteristics, includ-
ing machine topology, processor execution speeds, memory-access times, and bus delays.

Functional and Performance Prototyping of Parallel Programs 6



International Software Systems Inc. 2/1901

The system includes a simple mechanism for mapping software (logical) components to hard-
ware (physical) components. A mapping consists of pairs of software components (nodes and data
stores) and hardware components (processors and memories) taken from their respective defini-
tions. Such a mapping results in an embedding of the dataflow graph of logical connections into
the architecture graph of physical connections. The mapping facility also supports default sequen-
tial and fully-parallel mappings. More than one mapping per software specification is possible.

3.3 User Interface and Object Management

A set of integrated, highly interactive tools serves as the framework for building and modifying
prototypes. A multiwindow graphical editor enables analysts to easily define and modify hierar-
chical dataflows. An SSDL text editor and parser facilitates editing of node behaviors. A menu-
based editor is available for editing SSDL data object descriptions. Architectural features are de-
scribed with a graphical architecture editor.

The PProto graphical editing and simulation tools are closely tied to a database object manager,
allowing tools to share objects and screen images with consistent interpretations. A component re-
use facility for specifications and designs incorporates hierarchical library management and brows-
ing capabilities. This facility is closely integrated with system editors through the persistent object
services available from the object manager.

3.4 Simulation

The simulation environment in PProto includes an interpreter, a scheduler, and an architecture
modeler for prototype execution. These functions are controlled by a simulation kernel that imple-
ments a simulation cycle using a time-based event queue. The simulator uses the graphical inter-
faces of the graphic, architecture, and schema editors to display simulation results, although
prototype editing is disabled during execution.

The interpreter executes all SSDL language constructs contained in behaviors and keeps track
of processor execution times. The interpreter also generates events for message-passing and data-
store accesses. A time-based scheduler uses software/hardware mappings to arbitrate among mul-
tiple nodes competing to execute on a single processor. The architecture modeler manages resource
simulation, including message routing, serialization of memory and bus requests, and display of
utilization statistics.

Dynamic mechanisms for assisting users in observing and debugging prototype execution in-
clude dataflow and architecture graph animation, tailorable instruments (e. g., queue-status), node
breakpoints, object display statements, and dynamic simulation interruption. Most objects in the
system, such as nodes, connections, ports, data stores, schemas, processors, memories, and buses,
can be browsed during prototype simulation. Additional debugging assistance for parallel process-
ing activities is available in the form of a deadlock detection facility.

4 Usage Scenario: Electronic Funds Transfer Example

Several of the parallel programming elements of the PProto methodology of Figure 1 are now
illustrated using a simple example involving the architecture and design of a distributed electronic
funds transfer (EFT) system. The EFT specification was developed from a set of requirements

Functional and Performance Prototyping of Parallel Programs 7



International Software Systems Inc.

2/1981

adapted from the description of the system in [Staskauskas 1988]. A dataflow diagram of the sys-
tem, developed using PProto, appears in Figure 3.

@

Graph View ~- TopGraph

PROIGs (Zoomn) (Zoom Out) {Center ) : Critinue )

Accountsl
3
]
1
Terminall ,
AcctToBank T
Accounts?2
Terminal2 ‘?
Switch Accounts3
Terminal3

i

Terminald

OmD)

Figure 3. PProto Graphic Editor: EFT Example Dataflow

The EFT system processes transactions involving the automatic transfer of funds from custom-
er accounts to merchant accounts. The following three kinds of nodes and two kinds of data stores

are used

in the system:

Terminal. Originates new transactions and notifies customer whether transactions are

accepted or rejected.

tion requests.

Functional and Performance Prototyping of Parallel Programs

Bank. Debits customer accounts and credits merchant accounts according to transac-



International Software Systems Inc. 2/19/91

+ Switch. Routes transactions between terminals and banks according to customer and
merchant account numbers and transaction status.

* AcctToBank. Array that maps customer and merchant account numbers to banks.
* Accounts. List of account numbers and balances contained at a bank.

This example is simple enough that node refinements are not necessary to capture the initial spec-
ification being considered. Although not illustrated here, future iterations of the design cycle could
functional and performance simulation results to refine and decompose some of the functions (e.g.,
switch routing) and data structures of the system.

The design of Figure 3 constitutes an executable specification of the EFT system. The PProto
simulator is used to verify the prototype’s functionality. In addition to the simulation functions im-
plemented by the SSDL interpreter and scheduler, the debugging, instrumentation, and animation
facilities of the system can be used to observe architectural characteristics of the system (e.g., mes-
sage communication, data store accesses) and verify functionality. Transaction data enters the sys-
tem from the terminals by calling C functions that read data files. It is thus possible to easily
exercise the system for different data sets.

Particularly useful is the ability to automatically assign each node to a different processor using
a fully-parallel mapping. The model obtained by this approach is an ideal distributed EFT system
in which communication and memory access costs are eliminated. Not only does this allow veri-
fying the functional capabilities of the system, but simulation results can be used to suggest target
architectures and software/hardware mappings that are best matched to the EFT architecture. Also,
such prototyping helps identify serial bottlenecks that can be reduced through further functional
changes.

Performance simulation continues with mapping of the EFT software specification to one or
more hardware architecture definitions. Several mappings and architectures are suggested in Fig-
ures 4-6. By observing resource utilization and performance characteristics of the combined soft-
ware/hardware models, analysts can identify advantages and disadvantages of different system
architectures in early phases of the specification and design cycle.

5 Conclusions

Parallel Proto (PProto) is a computer-aided software engineering (CASE) environment that
aims to overcome difficulties associated with building parallel programs by means of rapid proto-
typing techniques. Using functional and performance modeling of dataflow specifications, PProto
assists in codesign and analysis of high-level software and hardware architectures. The system sup-
ports mechanisms for specifying scheduling, concurrency, data dependencies, synchronization,
and performance characteristics of multiple processing threads.

PProto provides a sophisticated specification and design environment that incorporates a
graphical user interface, several editors, an object-oriented database, a reuse facility, and an inter-
active simulator. The simulator contains components for instrumenting, animating, debugging, and
displaying results for functional and performance models. These tools support construction of
specifications using hierarchical dataflow graphs, models of parallel and distributed machine ar-
chitectures, object-oriented data models, and mappings of software components to hardware com-
ponents.

Functicnal and Performance Prototyping of Parallel Programs 9



International Software Systems Inc.

MO

2/19/1

OJOJOJOIOIOIOXO

{Terminall, PO)
(Terminal2, P1)
(Terminal3, P2)
(Terminald, P3)
(Switch, P4)
(Bankl, P5)

Figure 4. EFT Mapping to Shared-Memory Machine

MO

P2

(Terminall, PQ)
{Terminal2, P1)
(Terminal3, P2)
(Terminal4, P3)
(Switch, PO)
(Bankl, P1)

(Bank2, P6)
(Bank3, P7)
(AcctToBank, MQ)
(Accounts1, MO)
(Accounts2, M0)
(Accounts3, M0)

P1

P3

(Bank2, P2)
{(Bank3, P3)
{AcctToBank, M0O)
{Accountsl, M)
(Accounts2, M2)
(Accounts3, M3)

M1

M3

Figure 5. EFT Mapping to Distributed-Memory Machine

Functicnal and Performance Prototyping of Parallel Programs

10



Intamational Software Systems Ine. 2/1991

MO

=
U {P6)———M2
O

(Terminall, PO) (Bank2, P6)
(Terminal2, P1) (Bank3, P7)
(Terminal3, P2) (AcctToBank, M0O)
(Terminal4, P3) (Accountsl, M1)
{Switch, P4) (Accounts2, M2)
(Bank1, P5) (Accounts3, M3)

Figure 6. EFT Mapping to Hybrid Machine

6 Acknowledgments

PProto is being constructed under the sponsorship of the Rome Air Development Center

(RADC), Command and Control Division (CQ), C? Software Technology Branch (COEE), Con-
tract No. F30602-89-C-0129.

7 References

R.D. Acosta, “System/Subsystem Specification for Parallel Proto — DRAFT,” Technical Report
No. ISSI-A89A00002-DRAFT, International Software Systems Inc., Austin, TX, August 1,
1990.

R.D. Acosta, “Simulation of Modeling Parallel Programs in PProto,” to appear in Proceedings of
thel991 Summer Computer Simulation Conference, July 22-24, 1991,

J.C. Browne, M. Axam, and S. Sobek, “CODE: A Unified Approach to Parallel Programming,”
IEEE Software, Vol. 6, No. 4, July 1989, pp. 10-18.

V.A. Guarna, D. Gannon, D. Jablonowsky, A.D. Malony, and Y. Gaur, “Faust: An Integrated En-
vironment for Parallel Programming,” fEEE Software, Vol. 6, No. 4, July 1989, pp. 20-26.

Functional and Performance Prototyping of Paralle] Programs 11



International Software Systems Inc. 201991

D. Hartman, “Functional Description for the C°I Reusable Specification,” Air Force Contract No.
F30602-88-C-0029, Technical Report No. ISSI-C88A00002-DRAFT, International Software
Systems Inc., Austin, TX, June 1989,

M. Konrad and D. Hartman, “Functional Description for Proto,” Air Force Contract No. F30602-
85-C-0124, Rome Air Development Center, Griffiss AFB, NY, January 1988,

T. Lehr, Z. Segall, D.F. Vrsalovic, E. Caplan, A.L. Chung, and C.E. Fineman, “Visualizing Perfor-
mance Debugging,” Computer, Vol. 22, No. 10, October 1989, pp. 38-51

B.P. Miller, M. Clark, J. Hollingsworth, S. Kierstead, S.-S. Lim, and T. Torzewski, “IPS-2: The
Second Generation of a Parallel Program Measurement System,” [EEE Transactions on Par-
allel and Distribured Systems, Vol. 1, No. 2, April 1990, pp. 206-217.

D. Pease, A. Ghafoor, I. Ahmad, D.L. Andrews, K. Foudil-Bey, T.E. Karpinski, M. Mikki, and M.
Zerrouki, “PAWS: A Performance Evaluation Tool for Parallel Computing Systems,” Comput-
er, Vol. 24, No. 1, January 1991, pp. 18-29.

E.C. Russell, “SIMSCRIPT IL.5 and SIMANIMATION: A Tutorial,” Proceedings of the 1987
Winter Simulation Conference, A. Thesen, H. Grant, W.D. Kelton, Eds., 1987, pp. 102-111.

SES, “SES/workbench Introductory Overview,” Scientific and Engineering Software, Inc., Austin,
TX, April 1989.

M.G. Staskauskas, “The Formal Specification and Design of a Distributed Electronic Funds-Trans-
fer System,” IEEE Transactions on Computers, Vol. 37, No. 12, December 1988, pp.1515-
1528.

J.C. Yan, “Post-Game Analysis — A Heuristic Resource Management Framework for Concurrent
Systems,” Ph.D. Dissertation, Technical Report No. CSL-TR-88-374, Computer Systems Lab-
oratory, Departments of Electrical Engineering and Computer Science, Stanford University,
Stanford, CA, December 1988,



